If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2(6x)^2+4=226
We move all terms to the left:
1/2(6x)^2+4-(226)=0
Domain of the equation: 26x^2!=0We add all the numbers together, and all the variables
x^2!=0/26
x^2!=√0
x!=0
x∈R
1/26x^2-222=0
We multiply all the terms by the denominator
-222*26x^2+1=0
Wy multiply elements
-5772x^2+1=0
a = -5772; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-5772)·1
Δ = 23088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23088}=\sqrt{16*1443}=\sqrt{16}*\sqrt{1443}=4\sqrt{1443}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{1443}}{2*-5772}=\frac{0-4\sqrt{1443}}{-11544} =-\frac{4\sqrt{1443}}{-11544} =-\frac{\sqrt{1443}}{-2886} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{1443}}{2*-5772}=\frac{0+4\sqrt{1443}}{-11544} =\frac{4\sqrt{1443}}{-11544} =\frac{\sqrt{1443}}{-2886} $
| 4l=59 | | 12b-9b+5=8 | | 19p-10p-9p+2p=18 | | 1092=6(x+17) | | 3y-4=39 | | 10u-10u+4u-4u+2u=12 | | 3n^2+10n+7=0 | | 7y-4=y+230 | | 4x+2(x-3)=3(x+3)-2x | | 19b+6b-15b=10 | | 2.3a=11.5 | | 6x+42=6(x+7) | | 3x+1=×+13 | | 15z-14z-z+4z=20 | | 148=4x+58 | | 17g-16g=19 | | 3(x+7=7x-15 | | 15^x+7=12 | | 20c-14c=12 | | 58=4x+x=148 | | 5(x+4)=5(x+15) | | 14k-9k=5 | | 4p+9=p-123 | | 7d+12=33 | | 4x(x-2)=x+10 | | 2a-6=4(a+1)+15a+9 | | -1-5a=6(5a+4) | | 7n^2-9=-18n | | a+3=32 | | 7+13a=-12a+7 | | -(4x-5)=7 | | .5p=p+10 |